Kliknij tutaj --> ✨ matura z matematyki cke 2013
Matura 2023 rozpoczęła się w ubiegły czwartek od egzaminu z języka polskiego. W trakcie jego trwania do sieci wyciekły tematy wypracowań. W poniedziałek media społecznościowe zalały zdjęcia całego arkusza z matematyki. Centralna Komisja Egzaminacyjna (CKE) twierdzi, że wie, kto stoi za wyciekiem i zapowiada konsekwencje.
Matura matematyka 2023 Źródło: CKE, Pixabay. Matura z matematyki na poziomie podstawowym odbyła się w poniedziałek, 8 maja. Maturę rozszerzoną z matematyki abiturienci napiszą 12 maja
7. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem. 8. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl. 9. Pamiętaj, że zapisy w brudnopisie nie będą oceniane. 10. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora prostego. Miejsce na naklejkę.
Takie zadania mogą być w arkuszu CKE. Próbna matura z matematyki 2024 będzie się już 7 grudnia 2023 roku. Matura 2023 z matematyki na poziomie podstawowym jest jednym z trzech
Matura 2023 z matematyki rozpoczęła się o godzinie 9 w poniedziałek 8 maja. Wiemy już, że część zadań na maturze w formule 2015 pokrywała się z zadaniami na egzaminie w formule 2023.
Je Voudrais Rencontrer Quelqu Un De Bien. KościerzynaWiadomości, WydarzeniaMATURA 2013 z CKE.… red. 8 maja 2013, 15:05 Trwa matura 2013. Prezentujemy odpowiedzi do egzaminu maturalnego z matematyki na poziomie do nas na Facebooku!Publikujemy najciekawsze artykuły, wydarzenia i konkursy. Jesteśmy tam gdzie nasi czytelnicy!Polub nas na Facebooku!TWITTERKONTAKTKontakt z redakcjąByłeś świadkiem ważnego zdarzenia? Widziałeś coś interesującego? Zrobiłeś ciekawe zdjęcie lub wideo?Napisz do nas!Polecane ofertyMateriały promocyjne partnera Powracamy po swoich - wręczenie not identyfikacyjnych matura 2013arkuszodpowiedzi z matematyki maturamatura matematyka rozwiązaniamatura matematyka odpowiedzi Komentarze 1 Komentowanie artykułów jest możliwe wyłącznie dla zalogowanych Użytkowników. Cenimy wolność słowa i nieskrępowane dyskusje, ale serdecznie prosimy o przestrzeganie kultury osobistej, dobrych obyczajów i reguł prawa. Wszelkie wpisy, które nie są zgodne ze standardami, proszę zgłaszać do moderacji. Zaloguj się lub załóż kontoNie hejtuj, pisz kulturalne i zgodne z prawem komentarze! Jeśli widzisz niestosowny wpis - kliknij „zgłoś nadużycie”.Podaj powód zgłoszeniaSpamWulgaryzmyRażąca zawartośćPropagowanie nienawiściFałszywa informacjaNieautoryzowana reklamaInny 21:16:26 Zad. 34 Dwa miasta łączy linia kolejowa o długości 336 kilometrów. Pierwszy pociąg przebył tę trasę w czasie o 40 minut krótszym niż drugi pociąg. (...) Wyraźnie z treści wynika, że pociąg nr 1 jechał szybciej niż nr 2 - a w odpowiedzi jest odwrotnie. Błąd został popełniony w określeniu czasu drugiego pociągu. Rozwiązujący zadanie przyjął cza t-2/3 a powinno być t+2/3, wynika to z treści zadania (pociąg nr 2 jechał dłużej o 40 minut niż pociąg nr 1). Po drugie w treści zadania wyraźnie jest napisane "Średnia prędkość pierwszego pociągu na tej trasie była o 9 km/h większa od średniej prędkości drugiego pociągu." Przedstawione rozwiązanie zadania jest błędna!!! Kolejne zadanie błędnie rozwiązane...
Szybsze bicie serca, pot, zdenerwowanie, suchość w ustach, ból głowy, nerwy - typowe objawy stresu. Który z maturzystów, rozpoczynających jutro o godz. 9 zmagania z egzaminem dojrzałości, nie odczuwa ich dziś w większym lub mniejszym stopniu? Zupełnie niepotrzebnie! Analizując wskaźnik zdawalności egzaminu dojrzałości z poprzednich lat w Polsce, okazuje się, że maturzyści w woj. śląskim z zadaniami radzą sobie całkiem dobrze. Z niektórymi przedmiotami nawet najlepiej w kraju. Jesteśmy powyżej średniejChoć Roman Dziedzic, dyrektor Okręgowej Komisji Egzaminacyjnej w Jaworznie, podkreśla, że nie można porównywać suchych wyników w poszczególnych województwach kraju, tak złożonego egzaminu, jakim jest matura. Zawsze można posłużyć się zdawalnością egzaminu, czyli liczbą osób, które otrzymały świadectwo dojrzałości w odniesieniu do liczby osób, które przystąpiły do egzaminu. CZYTAJ KONIECZNIE:JAK SIĘ PRZYGOTOWAĆ DO MATURY NA OSTATNIĄ CHWILĘ? ZOBACZPRZYGOTUJ SIĘ DO MATURY. SPRAWDŹ, ILE WIESZ. ROZWIĄŻ PRÓBNĄ MATURĘ 2013 Z OPERONEM:Język polski [ARKUSZE, ODPOWIEDZI]Język angielski [ARKUSZE, ODPOWIEDZI, TRANSKRYPCJE]Język niemiecki [ARKUSZE, ODPOWIEDZI, TRANSKRYPCJE]Matematyka [ARKUSZE, ODPOWIEDZI, TABLICE]WOS - Wiedza o społeczeństwie [ARKUSZE, ODPOWIEDZI]Geografia [ARKUSZE i ODPOWIEDZI]Biologia [ARKUSZE i ODPOWIEDZI]Historia [ARKUSZE i ODPOWIEDZI]Chemia [ARKUSZE, ODPOWIEDZI, TABLICE]Fizyka [ARKUSZE, ODPOWIEDZI, TABLICE]Język francuski [ARKUSZE, ODPOWIEDZI, TRANSKRYPCJE]Język rosyjski [ARKUSZE, ODPOWIEDZI, TRANSKRYPCJE]- Analizując ten wskaźnik w latach 2011-2012 można stwierdzić, że dla naszego regionu jest on wyższy niż średni wskaźnik dla całej Polski - wylicza szef OKE. - Do tego biorąc pod uwagę fakt, że w województwie śląskim jest duża liczba ponadgimnazjalnych szkół zawodowych oraz szkół dla dorosłych (gdzie zazwyczaj wyniki egzaminu są nieco słabsze - przyp. red.), wysoki wskaźnik zdawalności ma znaczenie szczególne - tym nie koniec osiągnięć maturzystów z woj. śląskiego. Jak podkreśla Dziedzic, w latach 2010-2012, między innymi z historii, wiedzy o społeczeństwie, biologii, geografii, języka niemieckiego oraz z fizyki i astronomii, nasi maturzyści osiągnęli najwyższe wyniki w więc mają wynikiRozpoczynającego się jutro maratonu - przynajmniej części z języka angielskiego - z pewnością nie boi się Dawid Dąbrowski, maturzysta z II Liceum Ogólnokształcącego im. Heleny Malczewskiej w Zawierciu. Przez rok uczył się w amerykańskiej szkole w Wauconda, które leży na przedmieściach Chicago. Spędził tam całą drugą klasę Pojechałem głównie uczyć się języka, poznać różnice między Polską a USA - opowiada maturzysta z którzy nie wyjeżdżali za granicę, by poprawiać akcent, brali pewnie udział we wszelkiego typu warsztatach i spotkaniach, gdzie powtarzali materiał do egzaminu. 12 zasad obowiązujących na maturze Oto krótki poradnik, co wolno, a czego nie w trakcie egzaminu dojrzałości. 12 prostych zasad opracowała Centralna Komisja Egzaminacyjna. Warto je zapamiętać:1. Nie wnoś na salę egzaminacyjną telefonu komórkowego, odtwarzacza mp3 i innych urządzeń tego Przeczytaj instrukcję na pierwszej stronie arkusza. Słuchaj wyjaśnień udzielanych przez Uważnie zakoduj prace i wypełnij kartę Staraj się pisać czytelnie i starannie w wyznaczonych Zapisuj odpowiedzi długopisem lub piórem z czarnym tuszem lub Nie zadawaj nauczycielowi pytań dotyczących zadań Pamiętaj! Zawsze pracuj Nie ściągaj. Nie pozwalaj, aby inni zdający ściągali od Nie przeszkadzaj innym zdającym. Nie Zgłoś nauczycielowi, jeżeli poczujesz się Pilnuj, ile czasu zostało Ci do końca Jeżeli skończysz rozwiązywać zadania przed upływem wyznaczonego czasu, zgłoś to nauczycielowi, podnosząc rękę.
Odpowiedzi do matury z matematyki 2022 na poziomie podstawowym. Sprawdź objaśnienia zadań z matematyki i arkusz CKE! Jak wyglądał arkusz z matematyki przygotowany przez CKE? Jakie są prawidłowe rozwiązania zadań zamkniętych i otwartych? Wyjaśniamy. Oto proponowane odpowiedzi... 6 maja 2022, 7:47 Matura z matematyki 2022. Arkusz CKE i odpowiedzi. Pytania i zadania na egzaminie z matematyki na poziomie podstawowym Matura z matematyki 2022 na poziomie podstawowym to jeden z przedmiotów obowiązkowych, do którego uczniowie przystąpili już w czwartek, 5 maja o godz. 5 maja 2022, 11:46 Co można wnieść na maturę z matematyki 2022? Oto lista przyborów dozwolonych na egzaminie z matematyki i innych przedmiotów Co można zabrać ze sobą na maturę z matematyki? To pytanie stawia sobie wielu uczniów, którzy jutro przystąpią do kolejnego egzaminu dojrzałości. Wyjaśniamy,... 7 kwietnia 2022, 15:45 Matura z matematyki odwołana? Po druzgocącym raporcie NIK jest dosadna riposta MEN: To byłaby powtórka błędu z 1982 r. Koniec matury z matematyki? Najwyższa Izba Kontroli przygotowała raport, w którym przekonuje, że egzamin maturalny z matematyki nie powinien być dla uczniów... 4 marca 2019, 11:26 Matura 2016: Maturzyści zmagają się z matematyką 5 maja to dzień, w którym wszyscy tegoroczni maturzyści zmagają się z królową nauk - matematyką. O 9:00 rozpoczęły się egzaminy z poziomu podstawowego, a o... 5 maja 2016, 8:43 Matura 2015: Matematyka i łacina. Egzamin maturalny [ARKUSZE CKE, PYTANIA, ODPOWIEDZI] Matura 2015. We wtorek zaplanowano egzaminy maturalne z matematyki na poziomie podstawowym i z języka łacińskiego i kultury antycznej. Zobaczcie pytania,... 5 maja 2015, 11:14 Matura z matematyki z przymrużeniem oka. Rozwiąż test! [Matura 2015 na luzie] We wtorek, 5 maja rozpocznie się matura z CKE z matematyki. Chcecie się sprawdzić przed egzaminem? W ramach akcji Naszego Miasta MATURA 2015 NA LUZIE... 11 grudnia 2014, 13:34 Matura 2014. Matematyka na poziomie rozszerzonym [ODPOWIEDZI, ARKUSZE] Matura 2014. Matematyka na poziomie rozszerzonym. Egzamin odbył się w czwartek, 9 maja. Maturzyści do egzaminu przystąpili o godzinie 9. na rozwiązanie zadań... 9 maja 2014, 16:39 Matura 2013 w Marcinku. Maturzyści zdają matematykę [ZDJĘCIA] Matura 2013 trwa. Dzisiaj kolejny dzień egzaminów. Maturzyści zdają matematykę. Odwiedziliśmy rano I LO w Poznaniu. Chcieliśmy zobaczyć, jak wygląda matura 2013... 8 maja 2013, 9:51 Matura 2013 - Matematyka - poziom podstawowy [ARKUSZE, ODPOWIEDZI] Maturzyści są już po egzaminie z matematyki na poziomie podstawowym. Zobacz arkusze i odpowiedzi. 8 maja 2012, 13:37 Matura 2012: Matematyka - poziom podstawowy Matury w toku. We wtorek abiturienci zdają matematykę na poziomie podstawowym. Po zakończeniu egzaminu opublikujemy arkusze i rozwiązania zadań. 8 maja 2012, 8:01 Próbna matura 2012 z matematyki [ODPOWIEDZI] W środę uczniowie szkół ponadgimnazjalnych pisali test diagnostyczny z matematyki przygotowany przez Centralną Komisję Egzaminacyjną. Poniżej test i odpowiedzi. 7 marca 2012, 12:44 Matura 2012: Próbny egzamin z matematyki [PYTANIA, ODPOWIEDZI] Przed maturzystami kolejna próba. W środę uczniowie szkół ponadgimnazjalnych napiszą test diagnostyczny z matematyki przygotowany przez Centralną Komisję... 7 marca 2012, 8:01 Próbna matura 2012: Dziś test z matematyki [PYTANIA, ODPOWIEDZI] W środę prawdziwe wyzwanie dla wielkopolskich maturzystów - matematyka. W ubiegłym roku co piąty uczeń kończący liceum czy technikum nie poradził sobie z tą... 11 stycznia 2012, 9:03 Maturzyści polegli na zadaniach otwartych Wielkopolscy maturzyści poradzili sobie z tegoroczną maturą próbną z matematyki gorzej niż rok temu. W województwie zdawalność wyniosła 65 proc. Średnia punktów... 3 grudnia 2010, 11:23 Matura 2022. Znamy wyniki tegorocznego egzaminu dojrzałości Dziś, tj. 5 lipca, tuż po rozpoczęła się konferencja ministra edukacji i nauki Przemysława Czarnka oraz szefa Centralnej Komisji Egzaminacyjnej Marcina... 5 lipca 2022, 11:56 Kiedy jest matura poprawkowa w 2022 roku? Termin składania deklaracji już minął. Tak będzie wyglądała poprawka w sierpniu Matura poprawkowa 2022 odbędzie się tak jak co roku, w sierpniu. Mogą do niej przystąpić uczniowie, którym nie powiodło się na egzaminie dojrzałości i w części... 27 maja 2022, 9:48 Egzamin ósmoklasisty 2022 Matematyka. Odpowiedzi, arkusze CKE, zadania [ 25 maja tegoroczni ósmoklasiści przystąpili do rozwiązywania egzaminu ósmoklasisty z matematyki. Przedstawiamy arkusz CKE wraz z proponowanymi odpowiedziami. 25 maja 2022, 14:09 Matura 2022 biologia. Odpowiedzi, arkusze CKE, zadania [ 12 maja maturzyści mierzyli się z matura 2022 z biologii na poziomie rozszerzonym. Prezentujemy arkusz CKE wraz z proponowanymi odpowiedziami. 12 maja 2022, 16:50 Matura z biologii 2022. Pewniaki maturalne na egzamin z biologii. Zadania, które mogą pojawić się na maturze. Te zagadnienia warto znać! Matura z biologii 2022 rozpocznie się 12 maja 2022 roku o godz. Co pojawi się na egzaminie? Trudno powiedzieć, ale warto sprawdzić tzw. pewniaki... 11 maja 2022, 18:04 Matura 2022 matematyka rozszerzona. Odpowiedzi, arkusze CKE, zadania [ 11 maja tegoroczni maturzyści pisali maturę 2022 z matematyki na poziomie rozszerzonym. Prezentujemy arkusz CKE wraz z proponowanymi odpowiedziami. 11 maja 2022, 14:55 Koniec matury rozszerzonej z matematyki 2022. Co pojawiło się na egzaminie? Zadania, arkusz CKE oraz proponowane odpowiedzi Matura rozszerzona z matematyki to egzamin, do którego bardzo często przystępują uczniowie klas matematyczno-fizycznych, chcący kontynuować swoją naukę na... 11 maja 2022, 7:59
Matura podstawowa - zadania CKE - drugi zestaw W tym dziale znajdują się zadania treningowe do matury podstawowej przygotowane przez CKE. Zadania zostały przygotowane dla poprzedniej podstawy programowej, czyli przed 2015 rokiem. Większość tych zadań jest nadal aktualna do nowej matury po 2015 roku. Zadania zgodne z aktualną podstawą są oznaczone w prawym górnym rogu napisem: "Matura podstawowa". Szybka nawigacja do zadania numer: 10 20 30 40 50 60 70 80 90 100 .Liczba \( 3^{30}\cdot 9^{90} \) jest równa: A.\(3^{210} \) B.\(3^{300} \) C.\(9^{120} \) D.\(27^{2700} \) ALiczba \( 3^{\frac{8}{3}}\cdot \sqrt[3]{9^2} \) jest równa: A.\(3^3 \) B.\(3^{\frac{32}{9}} \) C.\(3^4 \) D.\(3^5 \) CLiczba \( \log 24 \) jest równa: A.\(2\log 2+\log 20 \) B.\(\log 6+2\log 2 \) C.\(2\log 6-\log 12 \) D.\(\log 30-\log 6 \) BLiczba \( 30 \) to \( p\% \) liczby \( 80 \), zatem: A.\(p42{,}5 \) A\( 4\% \) liczby \( x \) jest równe \( 6 \), zatem: A.\(x=150 \) B.\(x\lt 150 \) C.\(x=240 \) D.\(x\gt 240 \) ALiczba \( y \) to \( 120\% \) liczby \( x \). Wynika stąd, że: A.\(y=x+0{,}2 \) B.\(y=x+0{,}2x \) C.\(x=y-0{,}2 \) D.\(x=y-0{,}2y \) BRozwiązaniem równania \( \frac{x-3}{2-x}=\frac{1}{2} \) jest liczba: A.\(-\frac{4}{3} \) B.\(-\frac{3}{4} \) C.\(\frac{3}{8} \) D.\(\frac{8}{3} \) DMniejszą z dwóch liczb spełniających równanie \( x^2+5x+6=0 \) jest A.\(-6 \) B.\(-3 \) C.\(-2 \) D.\(-1 \) BLiczba \( 1 \) jest miejscem zerowym funkcji liniowej \( f(x)=(2-m)x+1 \). Wynika stąd, że A.\(m=0 \) B.\(m=1 \) C.\(m=2 \) D.\(m=3 \) DFunkcja \( f \) jest określona wzorem \( f(x)=\begin{cases} -3x+4 &\text{dla }x\lt 1\\ 2x-1 &\text{dla }x\ge 1 \end{cases} \). Ile miejsc zerowych ma ta funkcja? A.\(0 \) B.\(1 \) C.\(2 \) D.\(3 \) ARysunek przedstawia wykres funkcji \(y = f(x)\). Wskaż rysunek na którym jest przedstawiony wykres funkcji \(y = f(x + 1)\). DKtóry z zaznaczonych przedziałów jest zbiorem rozwiązań nierówności \(|2 - x| \le 3\). CWskaż równanie osi symetrii paraboli określonej równaniem \( y=-x^2+4x-11 \). A.\(x=-4 \) B.\(x=-2 \) C.\(x=2 \) D.\(x=4 \) CWskaż funkcję kwadratową, której zbiorem wartości jest przedział \( (-\infty ;3 \rangle \). A.\(f(x)=-(x-2)^2+3 \) B.\(f(x)=(2-x)^2+3 \) C.\(f(x)=-(x+2)^2-3 \) D.\(f(x)=(2-x)^2-3 \) AZbiorem rozwiązań nierówności \( x^2\ge 5 \) jest A.\(( -\infty ;-\sqrt{5} )\cup ( \sqrt{5};+\infty ) \) B.\(( -\infty ;-\sqrt{5} \rangle \cup \langle \sqrt{5};+\infty ) \) C.\(\langle \sqrt{5};+\infty ) \) D.\(\langle 5;+\infty ) \) BWykres funkcji kwadratowej \( f(x)=3(x+1)^2-4 \) nie ma punktów wspólnych z prostą o równaniu A.\(y=1 \) B.\(y=-1 \) C.\(y=-3 \) D.\(y=-5 \) DProsta o równaniu \( y=a \) ma dokładnie jeden punkt wspólny z wykresem funkcji kwadratowej \( f(x)=-x^2+6x-10 \). Wynika stąd, że A.\(a=3 \) B.\(a=0 \) C.\(a=-1 \) D.\(a=-3 \) CJaka jest najmniejsza wartość funkcji kwadratowej \( f(x)=x^2+4x-3 \) w przedziale \( \langle 0, 3 \rangle \)? A.\(-7 \) B.\(-4 \) C.\(-3 \) D.\(-2 \) CDane są wielomiany \( W(x)=3x^3-2x, V(x)=2x^2+3x \). Stopień wielomianu \( W(x)\cdot V(x) \) jest równy A.\(6 \) B.\(5 \) C.\(4 \) D.\(3 \) BIle rozwiązań rzeczywistych ma równanie \( 5x^4-13=0 \)? A.\(1 \) B.\(2 \) C.\(3 \) D.\(4 \) BWskaż liczbę rozwiązań równania \(\frac{11-x}{x^2-11}=0 \). A.\(0 \) B.\(1 \) C.\(2 \) D.\(3 \) BWskaż równanie prostej równoległej do prostej o równaniu \( y=2x-7 \). A.\(y=-2x+7 \) B.\(y=-\frac{1}{2}x+5 \) C.\(y=\frac{1}{2}x+2 \) D.\(y=2x-1 \) DKtóre z poniższych równań opisuje prostą prostopadłą do prostej o równaniu \( y=4x+5 \). A.\(y=-4x+3 \) B.\(y=-\frac{1}{4}x+3 \) C.\(y=\frac{1}{4}x+3 \) D.\(y=4x+3 \) BPunkty \( A=(-1,3)\) i \(C=(7,9) \) są przeciwległymi wierzchołkami prostokąta \( ABCD \). Promień okręgu opisanego na tym prostokącie jest równy A.\(10 \) B.\(6\sqrt{2} \) C.\(5 \) D.\(3\sqrt{2} \) CLiczba punktów wspólnych okręgu o równaniu \( (x+3)^2+(y-1)^2=4 \) z osiami układu współrzędnych jest równa A.\(0 \) B.\(1 \) C.\(2 \) D.\(4 \) CŚrodek \( S \) okręgu o równaniu \( x^2+y^2+4x-6y-221=0 \) ma współrzędne A.\(S=(-2,3) \) B.\(S=(2,-3) \) C.\(S=(-4,6) \) D.\(S=(4,-6) \) ADane są długości boków \(|BC|=5\) i \(|AC|=3\) trójkąta prostokątnego \( ABC \) o kącie ostrym \( \beta \) . Wtedy A.\(\sin \beta =\frac{3}{5} \) B.\(\sin \beta =\frac{4}{5} \) C.\(\sin \beta =\frac{3\sqrt{34}}{34} \) D.\(\sin \beta =\frac{5\sqrt{34}}{34} \) CKąt \( \alpha \) jest ostry i \( \sin \alpha =\frac{1}{4} \). Wówczas A.\(\cos \alpha \lt \frac{3}{4} \) B.\(\cos \alpha =\frac{3}{4} \) C.\(\cos \alpha =\frac{\sqrt{13}}{4} \) D.\(\cos \alpha >\frac{\sqrt{13}}{4} \) DKąt \( \alpha \) jest kątem ostrym i \( \operatorname{tg} \alpha =\frac{1}{2} \). Jaki warunek spełnia kąt \( \alpha \)? A.\(\alpha \lt 30^\circ \) B.\(\alpha =30^\circ \) C.\(\alpha =60^\circ \) D.\(\alpha >60^\circ \) AKąt między cięciwą \( AB \) a styczną do okręgu w punkcie \( A \) ma miarę \( \alpha =62^\circ \). Wówczas: A.\(\beta =118^\circ \) B.\(\beta =124^\circ \) C.\(\beta =138^\circ \) D.\(\beta =152^\circ \) BKąt środkowy i kąt wpisany są oparte na tym samym łuku. Suma ich miar jest równa \( 180^\circ \). Jaka jest miara kąta środkowego? A.\(60^\circ \) B.\(90^\circ \) C.\(120^\circ \) D.\(135^\circ \) CRóżnica miar kątów wewnętrznych przy ramieniu trapezu równoramiennego, który nie jest równoległobokiem, jest równa \( 40^\circ \). Miara kąta przy krótszej podstawie jest równa. A.\(120^\circ \) B.\(110^\circ \) C.\(80^\circ \) D.\(70^\circ \) BOdcinki \( BC\) i \(DE \) są równoległe. Długości odcinków \( AC, CE \) i \( BC \) są podane na rysunku. Długość odcinka \( DE \) jest równa A.\(6 \) B.\(8 \) C.\(10 \) D.\(12 \) CPole kwadratu wpisanego w okrąg o promieniu \( 4 \) cm jest równe A.\(64\) cm2 B.\(32\) cm2 C.\(16\) cm2 D.\(8\) cm2 BCiąg \(a_n\) jest określony wzorem \(a_n=(-3)^n\cdot (9-n^2)\) dla \(n\ge 1\). Wynika stąd, że A.\( a_3=-81 \) B.\( a_3=-27 \) C.\( a_3=0 \) D.\( a_3>0 \) CLiczby \(x-1,\ 4,\ 8\) (w podanej kolejności) są pierwszym, drugim i trzecim wyrazem ciągu arytmetycznego. Wówczas liczba \(x\) jest równa A.\( 3 \) B.\( 1 \) C.\( -1 \) D.\( -7 \) BLiczby \(-8,\ 4,\ x+1\) (w podanej kolejności) są pierwszym, drugim i trzecim wyrazem ciągu geometrycznego. Wówczas liczba \(x\) jest równa. A.\( -3 \) B.\( -1{,}5 \) C.\( 1 \) D.\( 15 \) AWszystkich liczb naturalnych dwucyfrowych, które są podzielne przez \(6\) lub przez \(10\), jest A.\( 25 \) B.\( 24 \) C.\( 21 \) D.\( 20 \) CWszystkich liczb naturalnych dwucyfrowych, których obie cyfry są mniejsze od \(5\) jest A.\( 16 \) B.\( 20 \) C.\( 25 \) D.\( 30 \) BLiczba sposobów, na jakie Ala i Bartek mogą usiąść na dwóch spośród pięciu miejsc w kinie, jest równa A.\( 25 \) B.\( 20 \) C.\( 15 \) D.\( 12 \) BMediana danych: \(0, 1, 1, 2, 3, 1\) jest równa A.\( 1 \) B.\( 1{,}5 \) C.\( 2 \) D.\( 2{,}5 \) AMediana danych przedstawionych w tabeli liczebności jest równa wartość \(0\) \(1\) \(2\) \(3\) liczebność \(5\) \(2\) \(1\) \(1\) A.\( 0 \) B.\( 0{,}5 \) C.\( 1 \) D.\( 5 \) AŚrednia arytmetyczna danych przedstawionych na diagramie częstości jest równa A.\( 1 \) B.\( 1{,}2 \) C.\( 1{,}5 \) D.\( 1{,}8 \) AZe zbioru liczb \(\{1, 2, 3, 4, 5, 6, 7, 8\}\) wybieramy losowo jedną liczbę. Liczba \(p\) oznacza prawdopodobieństwo otrzymania liczby podzielnej przez \(3\). Wtedy A.\( p\lt 0{,}25 \) B.\( p=0{,}25 \) C.\( p=\frac{1}{3} \) D.\( p>\frac{1}{3} \) BO zdarzeniach losowych \(A\) i \(B\) zawartych w \(\Omega \) wiadomo, że \(B\subset A\), \(P(A)=0{,}7\) i \(P(B)=0{,}3\). Wtedy A.\( P(A\cup B)=1 \) B.\( P(A\cup B)=0{,}7 \) C.\( P(A\cup B)=0{,}4 \) D.\( P(A\cup B)=0{,}3 \) BPrzekątna sześcianu ma długość \(3\). Pole powierzchni całkowitej tego sześcianu jest równe A.\( 54 \) B.\( 36 \) C.\( 18 \) D.\( 12 \) CPole powierzchni całkowitej sześcianu jest równe \(24\) cm2. Objętość tego sześcianu jest równa A.\( 8 \) cm3 B.\( 16 \) cm3 C.\( 27 \) cm3 D.\( 64 \) cm3 APrzekątna prostopadłościanu o wymiarach \(2 \times 3 \times 5\) ma długość A.\( \sqrt{13} \) B.\( \sqrt{29} \) C.\( \sqrt{34} \) D.\( \sqrt{38} \) DPrzekrój osiowy walca jest kwadratem o boku długości \(6\). Objętość tego walca jest równa A.\( 18\pi \) B.\( 54\pi \) C.\( 108\pi \) D.\( 216\pi \) BPrzekrój osiowy stożka jest trójkątem równobocznym o boku długości \(6\). Pole powierzchni bocznej tego stożka jest równe: A.\( 12\pi \) B.\( 18\pi \) C.\( 27\pi \) D.\( 36\pi \) BRozwiąż równanie \(\frac{2-3x}{1-2x}=-\frac{1}{2}\).\(x=\frac{5}{8}\)Rozwiąż układ równań \(\begin{cases} x+3y=5\\ 2x-y=3 \end{cases} \).\(\begin{cases} x=2 \\ y=1 \end{cases} \)Rozwiąż nierówność \(x^2+6x-7\le 0\).\(x\in \left\langle -7; 1 \right\rangle \)Rozwiąż równanie \(2x^3-x^2-6x+3=0\).\(x=\frac{1}{2}\) lub \(x=\sqrt{3}\) lub \(x=-\sqrt{3}\)O funkcji liniowej \(f\) wiadomo, że \(f(1)=2\) oraz, że do wykresu tej funkcji należy punkt \(P = (-2,3)\). Wyznacz wzór funkcji \(f\).\(f(x)=-\frac{1}{3}x+\frac{7}{3}\)Oblicz miejsca zerowe funkcji \[f(x)=\begin{cases} 2x+1\quad \text{dla }x\le 0\\ x+2\quad \text{dla }x>0 \end{cases} \]\(x=-\frac{1}{2}\)Naszkicuj wykres funkcji \[f(x)=\begin{cases} 2x+1\quad \text{dla }x\le 0\\ x+2\quad \text{dla }x>0 \end{cases} \]Oblicz najmniejszą wartość funkcji kwadratowej \(f(x)=x^2-6x+1\) w przedziale \(\langle 0,1 \rangle\).\(-4\)Wielomiany \(W(x)=ax(x+b)^2\) i \(V(x)=x^3+2x^2+x\) są równe. Oblicz \(a\) i \(b\).\(a=1\), \(b=1\)Wyrażenie \(\frac{3}{x-3}-\frac{x}{x+1}\) zapisz w postaci ilorazu dwóch wielomianów.\(\frac{-x^2+6x+3}{(x-3)(x+1)}\)Napisz równanie prostej równoległej do prostej o równaniu \(2x-y-11=0\) i przechodzącej przez punkt \(P=(1,2)\).\(y=2x\)Wyznacz równanie okręgu stycznego do osi \(Oy\), którego środkiem jest punkt \(S=(3, -5)\).\((x-3)^2+(y+5)^2=9\)Wyznacz równanie okręgu o środku w punkcie \(S = (3, -5)\) przechodzącego przez początek układu współrzędnych.\((x-3)^2+(y+5)^3=34\)Wyznacz równanie prostej zawierającej środkową \(CD\) trójkąta \(ABC\), którego wierzchołkami są punkty \(A=(-2, -1)\), \(B = (6, 1)\), \(C = (7, 10)\).\(y=2x-4\)W trójkącie prostokątnym, w którym przyprostokątne mają długości \(2\) i \(4\), jeden z kątów ostrych ma miarę \(\alpha \). Oblicz \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{5}\)Kąt \(\alpha \) jest ostry i \(\sin \alpha =\frac{1}{4}\). Oblicz \(3+2\operatorname{tg}^2\alpha \).\(\frac{47}{15}\)Punkt \(D\) leży na boku BC trójkąta równoramiennego \(ABC\), w którym \(|AC| = |BC|\). Odcinek \(AD \) dzieli trójkąt \(ABC\) na dwa trójkąty równoramienne w taki sposób, że \(|AB| = |AD| = |CD|\). Oblicz miary kątów trójkąta \(ABC\). \(72^\circ \), \(72^\circ \), \(36^\circ \)Oblicz pole trójkąta równoramiennego \(ABC\), w którym \(|AB| = 24\) i \(|AC| = |BC| = 13\).\(60\)Liczby \(4, 10, c\) są długościami boków trójkąta równoramiennego. Oblicz \(c\).\(c=10\)Liczby \(6, 10, c\) są długościami boków trójkąta równoramiennego. Oblicz \(c\).\(c=6\) lub \(c=10\)Liczby \(6, 10, c\) są długościami boków trójkąta prostokątnego. Oblicz \(c\).\(c=2\sqrt{34}\) lub \(c=8\)Liczby \(x - 1, x, 5\) są długościami boków trójkąta równoramiennego. Oblicz \(x\).\(x=5\) lub \(x=6\)Obwód czworokąta wypukłego \(ABCD\) jest równy \(50\) cm. Obwód trójkąta \(ABD\) jest równy \(46\) cm, a obwód trójkąta \(BCD\) jest równy \(36\) cm. Oblicz długość przekątnej \(BD\).\(|BD|=16\)Ile wyrazów ujemnych ma ciąg \((a_n)\) określony wzorem \(a_n = n^2 - 2n - 24\) dla \(n \ge 1\)?\(5\)Liczby \(2, x-3, 8\) w podanej kolejności są pierwszym, drugim i czwartym wyrazem ciągu arytmetycznego. Oblicz \(x\).\(x=7\)Wyrazami ciągu arytmetycznego \((a_n)\) są kolejne liczby naturalne, które przy dzieleniu przez \(5\) dają resztę \(2\). Ponadto \(a_3 = 12\). Oblicz \(a_{15}\).\(a_{15}=72\)Ile jest liczb naturalnych czterocyfrowych takich, że w ich zapisie dziesiętnym występuje jedna cyfra nieparzysta i trzy cyfry parzyste.\(2125\)Ile jest liczb naturalnych dwucyfrowych podzielnych przez \(15\) lub \(20\)?\(9\)Ile jest liczb naturalnych trzycyfrowych, w których cyfra dziesiątek jest o \(2\) większa od cyfry jedności?\(72\)Na jednej prostej zaznaczono \(3\) punkty, a na drugiej \(4\) punkty. Ile jest wszystkich trójkątów, których wierzchołkami są trzy spośród zaznaczonych punktów?\(30\)Średnia arytmetyczna liczb: \(3, 1, 1, 0, x, 0\) jest równa \(2\). Oblicz \(x\).\(x=7\)Oblicz średnią arytmetyczną danych przedstawionych na poniższym diagramie częstości. \(\frac{9}{10}\)Oblicz medianę danych: \(0, 1, 3, 3, 1, 1, 2, 1\).\(1\)Oblicz medianę danych przedstawionych w postaci tabeli liczebności wartość \(0\) \(1\) \(2\) \(3\) liczebność \(4\) \(3\) \(1\) \(1\) \(1\)Ze zbioru liczb \(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}\) wybieramy losowo jedną liczbę. Oblicz prawdopodobieństwo otrzymania liczby podzielnej przez \(3\) lub przez \(2\).\(\frac{7}{11}\)Ze zbioru liczb naturalnych dwucyfrowych wybieramy losowo jedną liczbę. Oblicz prawdopodobieństwo otrzymania liczby podzielnej przez \(15\).\(\frac{1}{15}\)Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania iloczynu oczek równego \(5\).\(\frac{1}{18}\)\(A\) i \(B\) są takimi zdarzeniami losowymi zawartymi w \(\Omega \), że \(A\subset B\) oraz \(P(A)=0{,}3\) i \(P(B)=0{,}4\). Oblicz \(P(A\cup B)\).\(0{,}4\)\(A\) i \(B\) są takimi zdarzeniami losowymi zawartymi w \(\Omega \), że \(A\subset B\) oraz \(P(A)=0{,}3\) i \(P(B)=0{,}7\). Oblicz prawdopodobieństwo różnicy \(B\backslash A\).\(0{,}4\)Przekątna sześcianu ma długość \(9\). Oblicz pole powierzchni całkowitej tego sześcianu.\(162\)Przekrój osiowy stożka jest trójkątem równoramiennym o podstawie długości \(12\). Wysokość stożka jest równa \(8\). Oblicz pole powierzchni bocznej tego stożka. \(60\pi \)Oblicz sinus kąta między przekątną sześcianu, a jego płaszczyzną podstawy.\(\frac{\sqrt{3}}{3}\)Czworokąty \(ABCD\) i \(APQR\) są kwadratami. Udowodnij, że \(|BP| = |DR|\). Na boku \(BC\) trójkąta \(ABC\) wybrano punkt \(D\) tak, by \(|\sphericalangle CAD| = |\sphericalangle ABC|\). Odcinek \(AE\) jest dwusieczną kąta \(DAB\). Udowodnij, że \(|AC| = |CE|\). Oblicz sumę wszystkich liczb trzycyfrowych zapisanych wyłącznie za pomocą cyfr wybranych ze zbioru \(\{0,1,2,3\}\).\(10392\)Z pojemnika, w którym są dwa losy wygrywające i trzy losy puste, losujemy dwa razy po jednym losie bez zwracania. Oblicz prawdopodobieństwo, że otrzymamy co najmniej jeden los wygrywający. Wynik przedstaw w postaci ułamka nieskracalnego.\(\frac{7}{10}\)Z miejscowości \(A\) i \(B\) oddalonych od siebie o \(182\) km wyjeżdżają naprzeciw siebie dwaj rowerzyści. Rowerzysta jadący z miejscowości \(B\) do miejscowości \(A\) jedzie ze średnią prędkością mniejszą od \(25\) km/h. Rowerzysta jadący z miejscowości \(A\) do miejscowości \(B\) wyjeżdża o \(1\) godzinę wcześniej i jedzie ze średnią prędkością o \(7\) km/h większą od średniej prędkości drugiego rowerzysty. Rowerzyści spotkali się w takim miejscu, że rowerzysta jadący z miejscowości \(A\) przebył do tego miejsca \(\frac{9}{13}\) całej drogi z \(A\) do \(B\). Z jakimi średnimi prędkościami jechali obaj rowerzyści?\(v_1=7\) km/h, \(v_2=14\) km/hUczeń przeczytał książkę liczącą \(480\) stron, przy czym każdego dnia czytał taką samą liczbę stron. Gdyby czytał każdego dnia o \(8\) stron więcej, to przeczytałby tę książkę o \(3\) dni wcześniej. Oblicz, ile dni uczeń czytał tę książkę.\(15\)Liczby \(a, b, c\) tworzą w podanej kolejności ciąg geometryczny. Suma tych liczb jest równa \(93\). Te same liczby, w podanej kolejności są pierwszym, drugim i siódmym wyrazem ciągu arytmetycznego. Oblicz \(a, b\) i \(c\).\(a=3\), \(b=15\), \(c=75\)Wyznacz wzór na \(n\)-ty wyraz ciągu arytmetycznego wiedząc, że suma pierwszych pięciu jego wyrazów jest równa \(10\), a wyrazy trzeci, piąty i trzynasty tworzą w podanej kolejności ciąg geometryczny.\(a_n=2\) lub \(a_n=3n-7\)Podstawą ostrosłupa prawidłowego czworokątnego \(ABCDS\) jest kwadrat \(ABCD\). Pole trójkąta równoramiennego \(ACS\) jest równe \(120\) oraz \(|AC| : |AS| = 10 : 13\) . Oblicz pole powierzchni bocznej tego ostrosłupa.\(20\sqrt{313}\)Podstawą ostrosłupa \(ABCDE\) jest kwadrat \(ABCD\). Punkt \(F\) jest środkiem krawędzi \(AD\), odcinek \(EF\) jest wysokością ostrosłupa (patrz rysunek). Oblicz objętość ostrosłupa, jeśli wiadomo, że \(|AE|=15\), \(|BE|=17\). \(\frac{64\sqrt{209}}{3}\)Dany jest trójkąt prostokątny \(ABC\), w którym \(|BC| = 30\), \(|AC| = 40\), \(|AB| = 50\). Punkt \(W\) jest środkiem okręgu wpisanego w ten trójkąt. Okrąg wpisany w trójkąt \(ABC\) jest styczny do boku \(AB\) w punkcie \(M\). Oblicz długość odcinka \(CM\). \(2\sqrt{145}\)Na zewnątrz trójkąta prostokątnego \(ABC\), w którym \(|\sphericalangle ACB| = 90\) oraz \(|AC| = 5\), \(|BC| = 12\) zbudowano kwadrat \(ACDE\) (patrz rysunek). Punkt \(H\) leży na prostej \(AB\) i kąt \(|\sphericalangle EHA| = 90^\circ\). Oblicz pole trójkąta \(HAE\). \(\frac{750}{169}\)Wykaż, że prawdziwa jest nierówność \(\sqrt{2^{50} + 1} + \sqrt{2^{50} - 1} \lt 2^{26}\).Udowodnij, że jeśli: a) \(x, y\) są liczbami rzeczywistymi, to \(x^2 + y^2 \ge 2xy\). b) \(x, y, z\) są liczbami rzeczywistymi takimi, że \(x + y + z = 1\), to \(x^2 + y^2 + z^2 \ge 1/3\). Punkt \(D\) leży na boku \(BC\) trójkąta równoramiennego \(ABC\), w którym \(|AC| = |BC|\). Odcinek \(AD\) dzieli trójkąt \(ABC\) na dwa trójkąty równoramienne w taki sposób, że \(|AD| = |CD|\) oraz \(|AB| = |BD|\) (patrz rysunek). Udowodnij, że \(|\sphericalangle ADC| = 5\cdot |\sphericalangle ACD| \) . Dane są dwa półokręgi o wspólnym środku \(O\) i średnicach odpowiednio \(AB\) i \(CD\) (punkty \(A, B, C, D\) i \(O\) są współliniowe). Punkt \(P\) leży na wewnętrznym półokręgu, punkt \(R\) leży na zewnętrznym półokręgu, punkty \(O, P\) i \(R\) są współliniowe. Udowodnij, że \(|\sphericalangle APB| + |\sphericalangle CRD| = 180^\circ\).
matura z matematyki cke 2013